Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines
نویسندگان
چکیده
One of the strategies for the reduction of energy consumption in railways systems is to execute efficient drivings (eco-driving). This eco-driving is the speed profile that requires the minimum energy consumption without degrading commercial running times or passenger comfort. When the trains are equipped with Automatic Train Operation systems (ATO) additional difficulties are involved. Their particular features make it necessary to develop accurate models that optimize the combination of the ATO commands of each speed profile to be used by the traffic regulation system. These commands are transmitted to the train via encoded balises on the track with little channel capacity (bandwidth). Thus, only a few and discrete values of the commands can be sent and the solution space of every interstation is made up of a relatively small set of speed profiles. However, the new state-of-the-art of signalling technologies permit a better bandwidth resulting in an exponential solution space. This calls for new methods for the optimal design of the ATO speed profiles without an exhaustive simulation of all the combinations. A MOPSO algorithm (Multi Objective Particle Swarm Optimization) to obtain the consumption/time Pareto front based on the simulation of a train with a real ATO system is proposed. The algorithm is able even to take into account only the comfortable speed profiles of the solution space. The fitness of the Pareto front is verified by comparing it with a NSGA-II algorithm (non-dominated sorting genetic algorithm II) and with the real Pareto front. Further, it has been used to obtain the optimal speed profiles in a real line of the Madrid Underground.
منابع مشابه
Optimal design of energy-efficient ATO CBTC driving for metro lines based on NSGA-II with fuzzy parameters
One of the main priorities for metro line operators is the reduction of energy consumption, due to the environmental impact and economic cost. The new moving block signalling system CBTC (Communication Based Train Control) is being installed in order to increase the transport capacity of new metro lines, and to upgrade lines equipped with the former fixed block signalling systems. In addition, ...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملA Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملModeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eng. Appl. of AI
دوره 29 شماره
صفحات -
تاریخ انتشار 2014